Lower Bounds for Derivatives of Polynomials and Remez Type Inequalities
نویسندگان
چکیده
P. Turán [!Tu] proved that if all the zeros of a polyniomial p lie in the unit interval I def = [−1, 1], then ‖p‖L∞(I) ≥ √ deg(p)/6 ‖p‖L∞(I) . Our goal is to study the feasibility of limn→∞ ‖pn‖X/‖pn‖Y = ∞ for sequences of polynomials {pn}n∈N whose zeros satisfy certain conditions, and to obtain lower bounds for derivatives of (generalized) polynomials and Remez type inequalities for generalized polynomials in various spaces.
منابع مشابه
A Note on the Sharpness of the Remez-type Inequality for Homogeneous Polynomials on the Sphere
A NOTE ON THE SHARPNESS OF THE REMEZ-TYPE INEQUALITY FOR HOMOGENEOUS POLYNOMIALS ON THE SPHERE M. YATTSELEV Dedicated to Ed Saff on the occasion of his 60th birthday Abstract. Remez-type inequalities provide upper bounds for the uniform norms of polynomials on given compact sets provided that for every where is a subset of of small measure. In this note we obtain an asymptotically sharp Remez-t...
متن کاملA Remez-Type Theorem for Homogeneous Polynomials
Remez-type inequalities provide upper bounds for the uniform norms of polynomials p on given compact sets K, provided that |p(x)| ≤ 1 for every x ∈ K \E, where E is a subset of K of small measure. In this paper we prove sharp Remeztype inequalities for homogeneous polynomials on star-like surfaces in R. In particular, this covers the case of spherical polynomials (when d = 2 we deduce a result ...
متن کاملNorming Sets and Related Remez-type Inequalities
The classical Remez inequality ([33]) bounds the maximum of the absolute value of a real polynomial P of degree d on [−1, 1] through the maximum of its absolute value on any subset Z ⊂ [−1, 1] of positive Lebesgue measure. Extensions to several variables and to certain sets of Lebesgue measure zero, massive in a much weaker sense, are available (see, e.g., [14, 39, 8]). Still, given a subset Z ...
متن کاملRemez-type Inequalities on the Size of Generalized Polynomials
Generalized polynomials are defined as products of polynomials raised to positive real powers. The generalized degree can be defined in a natural way. A number of classical inequalities holding for polynomials can be extended for generalized polynomials utilizing the generalized degree in place of the ordinary one. Remez established a sharp upper bound for the maximum modulus on [— 1,1] of alge...
متن کاملMüntz Spaces and Remez Inequalities
Two relatively long-standing conjectures concerning Müntz polynomials are resolved. The central tool is a bounded Remez type inequality for non-dense Müntz spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997